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Abstract Web email providers. Furthermore, it is difficult to differ-

Network security applications often require analyzinimiate a bot-user from a legitimate user individually, as
huge volumes of data to identify abnormal patterns opOth users may share a common computer and that each
activities. The emergence of cioud-computing model80t-User sends only a few spam emails
opens up new opportunities to address this challenge byWh|Ie detecting bot-users individually is Q|ﬁ|cult, de-'
leveraging the power of parallel computing. técting them as an aggregate holds the promise. T_he. ratio-
In this paper, we design and implement a novel Sy§1a| is that since bot-users are often configured similarly
tem calledBotGraphto detect a new type of botnet spam-a”d controlled by a small number of botnet commanders,
ming attacks targeting major Web email providers. Botthey ténd to share common features and correlate each
Graph uncovers the correlations among botnet activitiedher in their behavior such as active time, spam con-
by constructing large user-user graphs and looking fdENts: or email sending strategies [24, 27]. Although this
tightly connected subgraph components. This enables §8Proach is appealing, realizing it to enable detection at
to identify stealthy botnet users that are hard to deteé/arge scale has two key challenges:

when viewed in isolation. To deal with the huge data e The first is the algorithmic challenge in finding sub-
volume, we implement BotGraph as a distributed appli-  tle correlations among bot-user activities and distin-
cation on a computer cluster, and explore a number of  guishing them from normal user behavior.
performance optimization techniques. Applying itto two e The second challenge is how to efficiently analyze
months of Hotmail log containing over 500 million users, a large volume of data to unveil the correlations
BotGraph successfully identified over 26 million botnet- among hundreds of millions of users. This requires
created user accounts with a low false positive rate. The processing hundreds of gigabytes or terabytes of
running time of constructing and analyzing a 220GB Hot- user activity logs.
mail log is around 1.5 hours with 240 machines. We be-
lieve both our graph-based approach and our implemen-Recent advancement in distributed programming
tations are generally applicable to a wide class of securitnodels, such as MapReduce [6], Hadoop [2], and
applications for analyzing large datasets. Dryad/DryadLINQ [10, 29], has made programming and
1 Introduction computat_ion on a _Iarge distrib'u'ted cluster much easier.
This provides us with opportunities to leverage the paral-
Despite a significant breadth of research into botnet d¢el computing power to process data in a scalable fashion.
tection and defense (e.g., [8, 9]), botnet attacks remaigowever, there still exist many system design and imple-
a serious problem in the Internet today and the phenomnentation choices.
enon is evolving rapidly ( [4, 5, 9, 20]): attackers con- |n this paper, we design and implement a system called
stantly craft new types of attacks with an increased levotGraphto detect the Web-account abuse attack at a
of sophistication to hide each individual bot identities. |arge scale. We make two important contributions.

One recent such attack is théeb-account abuse at-  Qur first contribution is to propose a novel graph-
tack [25]. Its large scale and severe impact have renased approach to detect the new Web-account abuse at-
peatedly caught public media’s attention. In this attackack. This approach exposes the underlying correlations
spammers use botnet hosts to sign up millions of user agmong user-login activities by constructindgage user-
counts (denoted amt-usersor bot-accountfrom major  user graph Our approach is based on the observation that
free Web email service providers such as AOL, Gmailpot-usersshare IP addresseshen they log in and send
Hotmail, and Yahoo!Email. The numerous abused boemails. BotGraph detects the abnormal sharing of IP ad-
accounts were used to send out billions of spam emaitfresses among bot-users by leveraging the random graph
across the world. theory. Applying BotGraph to two months of Hotmail

Existing detection and defense mechanisms are inelbg of total 450GB data, BotGraph successfully identified
fective against this new attack: The widely used maibver 26 million bot-accounts with a low false positive rate
server reputation-based approach is not applicable bef0.44%. To our knowledge, we are the first to provide a
cause bot-users send spam emails through only legitimate

1Recent anecdotal evidence suggests that bot-users have also been
*The work was done while Yao was an intern at Microsoft Researcprogrammed to receive emails and read them to make them look more
Silicon Valley. legitimate.




systematic solution that can successfully detect this neWhile each user is required to solve a CAPTCHA test
large-scale attack. to create an account, attackers have found ways to by-

Our second contribution is an efficient implementapass CAPTCHAs, for example, redirecting them to ei-
tion using the new distributed programming models fother spammer-controlled Web sites or dedicated cheap
constructing and analyzing large graphs. In our applicdabor 2. The solutions are sent back to the bot hosts
tion, the graph to construct involves tens of millions offor completing the automated account creation. Tro-
nodes and hundreds of billions of edges. It is challengan.Spammer.HotLan is a typical worm for such auto-
ing to efficiently construct such large graphs on a commated account signup [25]. Today, this attack is one of
puter cluster as the task requires computing pair-wise coiie major types of large-scale botnet attacks, and many
relations between any two users. We present two graplrge Web email service providers, such as Hotmail, Ya-
construction methods using different execution plans: theoo!Mail, and Gmail, are the popular attack targets. To
simpler one is based on the MapReduce model [6], aralr best knowledge, BotGraph is one of the first solutions
the other performs selective filtering that requires théo combat this new attack.

Join operation provided by Map-Reduce-Merge [28] or The Web-account abuse attack is certainly not the first
DryadLINQ [29]. By further exploring several perfor- type of botnet spamming attacks. Botnet has been fre-
mance optimization strategies, our implementation caguently used as a media for setting up spam email servers.
process a one-month dataset (220GB-240GB) to cofror example, a backdoor rootkit Spam-Mailbot.c can
struct a large graph with tens of millions of nodes in 1.%e used to control the compromised bots to send spam
hours using a 240-machine cluster. The ability to effiemails. Storm botnet, one of the most widespread P2P
ciently compute large graphs is critical to perform conbotnets with millions of hosts, at its peak, was deemed re-
stant monitoring of user-user graphs for detecting attackgponsible for generating 99% of all spam messages seen
at their earliest stage. by a large service provider [9, 19].

Our ultimate goal, however, is not to just tackle this Although our work primarily focuses on detecting the
specific new form of attacks, but also to provide a generleb-account abuse attack, it can potentially be general-
framework that can be adapted to other attack scenaridged to detect other botnet spamming attacks. In this gen-
To this end, the adoption of a graph representation ca@fal problem space, a number of previous studies have
potentially enable us to model the correlations of a widall provided us with insights and valuable understanding
class of botnet attacks using various features. Furtheélewards the different characteristics of botnet spamming
more, since graphs are powerful representations in ma@gtivities [1, 11, 23, 26]. Among recent work on detecting
tasks such as social network analysis and Web graph miboetnet membership [20, 22, 24, 27], SpamTracker [24]
ing, we hope our large-scale implementations can sen@nd AutoRE [27] also aim at identifying correlated spam-
as an example to benefit a wide class of applications féning activities and are more closely related with our
efficiently constructing and analyzing large graphs. work. In addition to exploiting common features of bot-

The rest of the paper is organized as follows. We digaet attacks as SpamTracker and AutoRE do, BotGraph
cuss related work in Section 2, and overview the Botalso leverages the connectivity structures of the user-user
Graph system in Section 3. We then describe in Seéelationship graph and explores these structures for bot-
tion 4 the detail algorithms to construct and analyze &etaccount detection.

large user-user graph for attack detection. We presepty pistributed and Parallel Computing

the system implementation and performance evaluati .
in Section 5, followed by attack detection results in Se::)ﬂ"ere has been decades of research on distributed and

tion 6. Finally, we discuss attacker countermeasures aR@a/lél computing. Massive parallel processing (MPP)
system generalizations in Section 7. qevelops speqal computer systems for parallel. comput-
ing [15]. Projects such as MPI (Message Passing Inter-
2 Background and Related Work face) [14] and PVM(Parallel Virtual Machine) [21] de-
In this section, we first describe the new attack we focu\éelop software Ilbrarlgs to support parallel computing.
on in our study, and review related work in botnet detecs istributed database is another large category of parallel

tion and defense. As we use Dryad/DryadLINQ as ou(riata processing applications [17]. .
The emergence of cloud computing models, such as

programming model for analyzing large datasets, we alﬁﬂ
: I~ : apReduce [6], Hadoop [2], Dryad/DryadLINQ [10,
discuss existing approaches for parallel computation ]p hasuenal[aléd us to \F/)vri[te] sim)[gle prggarams?or[ offi

computer clusters, particularly those relate to the rece .

cloud computing systems. clently analyzing a vast amount_of data on a computer
cluster. All of them adopt the notion of staged computa-

2.1 Spamming Botnets and Their Detection tion, which makes scheduling, load balancing, and failure

gcovery automatic. This opens up a plethora of oppor-

The recent Web-account abuse attack was first reported-.". o ; Lo
unities for re-thinking network security—an application

in summer 2007 [25], in which millions of botnet email
acco_ums were created fr_om major Web email SEIVICE 2|nterestingly, solving CAPTCHAs has ended up being a low-wage
providers in a short duration for sending spam emailsadustry [3].
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itives. In particular, MapReduce and Hadoop provide [iogn_%e@ion | (g | based clustering | [qcricious
two simple functions, Map and Reduce, to facilitate data@ " @ e @
partitioning and aggregation. This abstraction enables == RunonDyadlingclusters === Output locally
applications to run computation on multiple data parti-
tions in parallel, but is difficult to support other com-
mon data operations such as database Join. To overcog simple EWMA (Exponentially Weighted Moving Av-
this shortcoming, Map-Reduce-Merge [28] introduces @arage) [13] algorithm to detect sudden changes in signup
Merge phase to facilitate the joining of multiple hetero-activities. This method can effectively detect over 20 mil-
geneous datasets. More recent scripting languages, suion bot-users in 2 months (see Appendix A for more de-
as Pig Latin [16] and Sawzall [18], wrap the low leveltails on EWMA). We can then apply adaptive throttling to
MapReduce procedures and provide high-level SQL-likgate limit account-signup activities from the correspond-
query interfaces. Microsoft Dryad/DryadLINQ [10, 29] ing suspicious IP addresses.
offers further flexibility. It allows a programmer to write.  One might think that spammers can gradually build up
a simple C# and LINQ program to realize a large class ¢fn aggressive signup history for an IP address to evade
computation that can be represented as a DAG. EWMA-based detection. In practice, building such a his-
Among these choices, we implemented BotGraph usory requires a spammer to have full control of the IP
ing Dryad/DryadLINQ, but we also consider our processaddress for a long duration, which is usually infeasible
ing flow design using the more widely used MapReducas end-users control the online/offline switch patterns of
model and compare the pros and cons. In contrast their (compromised) computers. The other way to evade
many other data-centric applications such as sorting arEiVMA-based detection is to be stealthy. In the next sec-
histogram computation, it is much more challenging taion we will introduce a graph based approach to detect
decompose graph construction for parallel computatiogtealthy bot-users.
in an efficient manner. In this space, BotGraph serve
as an example system to achieve this goal using the n
distributed computing paradigm. Our second component detects the remaining stealthy
. bot-accounts. As a spammer usually controls a set of bot-
3 BotGraph System Overview users, defined as amt-user groupthese bot-users work
Our goal is to capture spamming email accounts used by a collaborative way. They may share similar login or
botnets. As shown in Figure 1, BotGraph has two comemail sending patterns because bot-masters often manage
ponents: aggressive sign-up detection and stealthy b@# their bot-users using unified toolkits. We leverage the
user detection. Since service providers such as Hotmaimilarity of bot-user behavior to build a user-user graph.
limit the number of emails an account can send in on# this graph, each vertex is a user. The weight for an
day, a spammer would try to sign up as many accounggge between two vertices is determined by the features
as possible. So the first step of BotGraph is to detect agte use to measure the similarity between the two vertices
gressivesignups The purpose is to limit the total number (users). By selecting the appropriate features for similar-
of accounts owned by a spammer. As a second step, Bdly measurement, a bot-user group will reveal itself as a
Graph detects the remaining stealthy bot-users based ednnected component in the graph.
their login activities. With the total number of accounts In BotGraph, we use the number of common IP ad-
limited by the first step, spammers have to reuse their adresses logged in by two users as our similarity fea-
counts, resulting in correlations among account logingure (i.e., edge weight). This is because the aggres-
Therefore BotGraph utilizes a graph based approach sive account-signup detection limits the number of bot-
identify such correlations. Next, we discuss each comp@ccounts a spammer may obtain. In order to achieve a
nent in detail. large spam-email throughout, each bot-account will log
in and send emails multiple times at different locations,
resulting in the sharing of IP addresses as explained be-
Our aggressive signup detection is based on the premitsv:
that signup events happen infrequently at a single IP ad-
dress. Even for a proxy, the number of users signed up e The sharing of one IP addressFor each spammer,
from it should be roughly consistent over time. A sud- the number of bot-users is typically much larger than
den increase of signup activities is suspicious, indicating  the number of bots. Our data analysis shows that on
that the IP address may be associated with a bot. We use each day, the average number of bot-users is about

Figure 1: The Architecture of BotGraph.

Detection of Stealthy Bot-accounts

3.1 Detection of Aggressive Signups



50 times more than the number of bots. So multipléhe normal-user subgraph contains only isolated vertices
bot-users must log in from a common bot, resultingand/or very small connected components. We introduce
in the sharing of a common IP address. the random graph theory to interpret this phenomenon
and to model the giant connected components formed by

e The sharing of multiple IP addresses:We found pot-users. The theory also serves as a guideline for de-

that botnets may have a high churn rate. A bokigning our graph-based bot-user detection algorithm.
may be quarantined and leave the botnet, and new

bots may be added. An active bot may go offliné*-1.1 Giant Component in User-User Graph

and it is hard to predict when it will come back on-| ¢t s first consider the following three typical strategies
line. To maximize the bot-account utilization, each,sed by spammers for assigning bot-accounts to bots, and
account needs to be assigned to different bots ove 5 mine the corresponding user-user graphs.
time. Thus a group of bot-accounts will also share
multiple IP addresses with a high probability. e Bot-user accounts are randomly assigned to bots. Ob-
viously, all the bot-user pairs have the same probability
Our BotGraph system leverages the two aforemen- ), to be connected by an edge.
tioned IP sharing patterns to detect bot-user activities. The spammer keeps a queue of bot-users (i.e., the
Note that with dynamic IP addresses and proxies, nor- spammer maintains all the bot-users in a predef,ined

mal users may share IP addresses too. To exclude Suc%rder). The bots come online in a random order. Upon

cases, multiple shared IP addresses in the same Au'request from a bot when it comes online, the spammer
tonomous System (AS) are only counted as one Shareo'assigns to the requesting bot the topvailable (cur-

‘I‘P address. In the rest”of this paper, we use the number of rently not used) bot-users in the queue. To be stealthy,
shared IP addresses” to denqte the the number of ASes, ot makes only one request fobot-users each day.
of the shared IP addresses. Itis very rare to have a 9"9CPThe third case is similar to the second case, except that
of normal users that always coincidentally use the same there is no limit on the number of bot-useré a bo?can
set of IP addresses across different domains. Using there uest for one dav and that— 1. Specifically. a
AS-number metric, a legitimate user on a compromised bo(z requests one bgt—account e_acH timpe and it)gsks for
bot will not be mistakenly classified as a bot-user because 9 e L

another account after finishing sending enough spam

their number of “shared IPs” will be only orfe i .
emails using the current account.

4 Graph-Based Bot-User Detection . : . .

We simulate the above typical spamming strategies and
In this section we introduce random graph models teonstruct the corresponding user-user graph. In the simu-
analyze the user-user graph. We show that bot-usgftion, we have 10,000 spamming accounts< 10, 000)
groups differentiate themselves from normal user groupgnd500 bots in the botnet. We assume all the bots are ac-
by forming giant components in the graph. Based on thgve for 10 days and the bots do not change IP addresses.
model, we design a hierarchical algorithm to extract sucth model 2, we pick = 20. In model 3, we assume the
components formed by bot-users. Our overall algorithmots go online with a Poisson arrival distribution and the
consists of two stages: 1) constructing a large user-usgihgth of bot online time fits a exponential distribution.
graph, 2) analyzing the constructed graph to identify boty/e run each simulation setup 10 times and present the
user groups. Note one philosophy we use is to analyzgerage results.
group properties instead of single account properties. For Figure 2 shows the simulation results. We can see that
example, it may be difficult to use email-sending statisticghere is a sharp increase of the size of the largest con-
for individual bot-account detection (each bot accountected component as the thresh@ldlecreases.g., the
may send a few emails only), but it is very effective topropapility of two vertices being connected increases). In
use the group statistics to estimate how likely a grougther words, there exists some transition poinfoff 7
of accounts are bot-accounts (e.g., they all sent a similgf apove this transition point, the graph contains only iso-
number of emails). lated vertices and/or small components. Officerosses
4.1 Modeling the User-User Graph the transition point, the giant component “suddenly” ap-

. . ears. Note that different spamming strategies may lead
The user-user graph formed by bot-users is drast|cal¥, different transition values. Model 2 has a transition

different from the graph formed by _normal users. bOti/al e of " = 2, while Model 1 and 3 have the same tran-
users have a higher chance of sharing IP addresses ar; i

| ) o ition value ofT" = 3.
thus more tightly connected in the graph. Specifically, Using email server loas and a set of known botnet ac-
we observed the bot-user subgraph contaigeat con- 9 9

neced componenta group of connectea verices nai£2U1S MOV by e Hoimal cberatona) graup we
occupies a significant portion of the subgraph, whil o . 9 ally )
ransition point of forming giant components, while nor-

3\We assume majority of hosts are physically located in only one ASN@l users usually cannot form large components with
We discuss how to prune legitimate mobile users in Section 4.2.2.  more than 100 nodes.




e Bot-users from different bot-user groups may be in the
same connected component. This happens due to: 1)
bot-users may be shared by different spammers, and 2)
a bot may be controlled by different spammers.

e There may exist connected components of normal
users. For example, mobile device users roaming
around different locations will be assigned IP ad-
dresses from different ASs, and therefore appeared as
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1 2 3 4 5 6 a connected component.
_ . _ Edgeweight threshold To handle these problems, we propose a hierarchical
Figure 2: The size of the largest connected component. . g1q4rithm to extract connected components, followed by
4.1.2 Random Graph Theory a pruning and grouping procedure to remove false posi-

) tives and to separate mixed bot-user groups.
The sudden appearance of a giant subgraph component

after a transition point can be interpreted by the theory dt-2-1 Hierarchical Connected-Component
random graphs. Extraction

Denote G(n,p) as the random graph model, whichAlgorithm 1 describes a recursive function
generates a-vertex graph by simply assigning an edgeGroupExtracting that extracts a set of connected
to each pair of vertices with probability € (0,1]. We components from a user-user graph in a hierarchical
call the generated graph an instance of the médel p). way. Having such a recursive process avoids using a
The parameter determines when a giant connected comfixed thresholdl’, and is potentially robust to different
ponent will appear in the graph generated &Gyn,p). spamming strategies.
The following property is derived from theorems in [7, Using the original user-user graph as input, Bot-
p.65~67]: Graph begins with applying Groupxtracting(G, T) to

the graph withI” = 2. In other words, the algorithm first

Theorem 1 A graph generated by (n,p) has average dentifies all the connected components with edge weight
degreed = n - p. If d < 1, then with high probabil- 4, > 2. It then recursively increases to extract con-
ity the largest component in the graph has size less thafected subcomponents. This recursive process continues
O(logn). If d > 1, with high probability the graph will - yntj| the number of nodes in the connected component
contain a giant component with size at the orde©df).  is smaller than a pre-set threshdldl (M = 100 in our
experiments). The final output of the algorithm is a hier-

For a group Of. bot-users that share a set of ”.DS’ the & rchical tree of the connected components with different
erage degree will be larger than one. According to thgdge weights

above theorem, the giant component will appear with a
high probability. On the other hand, normal users rarely
share IPs, and the average degree will be far less thanprocedure Group Extracting(G, T)

one when the number of vertices is large. The resulted Remove all the edges with weight < 7 from G
graph of normal users will therefore contain isolated ver- 4ng suppose we gét';

tices and/or small components, as we observe in our Casg ring out all the connected subgrapfis, Go, - - -
In other words, the theorem interprets the appearance oka in G’

giant components we have observed in subsection 4.JL.31.for‘ i — 1 .k do

Based on the theorem, the sizes of the components can )
serve as guidelines for bot-user pruning and grouphg
(discussed in subsection 4.2.2 and 4.2.3).

Let |G| be the number of nodes @;
if |G| > M then

6 OutputGy, as a child node of7 ;
4.2 Bot-User Detection Algorithm 7 GroupExtractingGy, T + 1) ;

As we have shown in section 4.1, a bot-user group formsa | end
connected component in the user-user graph. Intuitively end

one could identify bot-user groups by simply extracting _ - . . -
the connected components from the user-user graph géﬂgonthm 1: A Hierarchical algorithm for connected

erated with some predefined thresh@ldthe least num- COmponent extraction from a user-user graph.
ber of shared IPs for two vertices to be connected by an

edge). In reality, however, we need to handle the follow4.2.2 Bot-User Pruning

ing issues:

For each connected component output by Algorithm 1,

e [tis hard to choose a single fixed thresholdbfAswe we want to compute the level of confidence that the set
can see from Figure 2, different spamming strategiesf users in the component are indeed bot-users. In par-
may lead to different transition points. ticular, we need to remove from the tree (output by Al-
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Figure 4: An example of extracting bot-user groups using the
random graph model.
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Since the histograms are normalized, bethand s,
are in the range o0, 1] and can be used as confidence
2 measures. A large confidence value means that the major-
03—, Ity Ofthe usersinthe connected component are bot-users.
Emailsize x10° We use onlys; to choose the candidates of bot-user com-

IS

Figure 3: Histograms of (1) number of emails sent per day anHO”e”tS' because represents a more robust feature. We

(2) emall size. First row: aggressive bot-users; second ro

no

rmal users.

Wses; together with other features (e.g., account naming
patterns) for validation purpose only (see Section 6).
In the pruning process, BotGraph traverses the tree out-

gorithm 1) the connected components involving mostlyput by Algorithm 1. For each node in the tree, it computes
legitimate/normal users.
A major difference between normal users and bot-usefomponent, and removes the nodaiifis smaller than a

is the way they send emails. More speciﬁca”y, normal]thShO'dS. In total, fewer than 10% of Hotmail accounts
users usually send a small number of emails per day &ent more than 3 emails per day, so intuitively, we can set
average, with different email sizes. On the other handhe thresholdS = 0.1. In order to minimize the number
bot-users usually send many emails per day, with ider®f false positive users, we conservatively set the threshold
tical or similar email sizes, as they often use a commo# = 0.8, i.e., we only consider nodes where at least 80%
template to generate spam emails. It may be difficult t§f users sent more than 3 emails per day as suspicious
use such differences in email-sending statistics to classi§ot-user groups (discussed further in Section 6.2).
bot-accounts individually. But when a group of accounts, » 3 got-User Grouping

are viewed in aggregate, we can use these statistics to es- ] }
timate how likely the entire group are bot-users. To do sd\ter pruning, a candidate connected-component may

for each component, BotGraph computes two histogranf®ntain two or more bot-user groups. BotGraph proceeds
from a 30-day email log:

s1, the confidence measure for this node to be a bot-user

to decompose such components further into individual
bot-user groups. The correct grouping is important for

e hi: the numbers of emails sent per day per user. WO reasons:
e hy: the sizes of emails.

clearly different. Bot-users in a component sent out a
larger number of emails on average, with similar email
sizes (around 3K bytes) that are visualized as the peak in

Figure 3 shows two examples of the above two his-
tograms, one computed from a component consisting of
bot-users (the first row), the other from a component of
normal users (the second row). The distributions are

e We can extract validation features (e.g,mentioned
above and patterns of account names) more accurately
from individual bot-user groups than from a mixture
of different bot-user groups.

e Administrators may want to investigate and take differ-
ent actions on different bot-user groups based on their
behavior.

the email-size histogram. Most normal users sent a smalfe use the random graph model to guide the process of
number of emails per day on average, with email sizezselecting the correct bot-user groups. According to the

distributing more uniformly. BotGraph normalizes eactrandom graph model, the user-user subgraph of a bot-user
histogram such that its sum equals to one, and computgeoup should consist of a giant connected-component
two statisticss; andss, from the normalized histograms plus very small components and/or isolated vertices. So

to quantify their differences:
e s;. the percentage of users who sent more than

emails per day;

BotGraph traverses the tree again to select tree nodes that
ae consistent with such random graph property. For each
nodeV being traversed, there are two cases:

e s,: the areas of peaks in the normalized email-size hiss V's children contain one or more giant components
togram, or the percentage of users who sent out emails whose sizes ar@(N), whereN is the number of users

with a similar size.

in nodeV;



e s children contain only isolated vertices and/or @ neuts: partiioned data according
Sma” Components Wlth Size a(log(N)) For any two users U; and U;sharing
the same IP, output an edge with . . _ . .

For case 1, we recursively traverse each subtree rooted bﬁ weight one (Uy, U; , 1)
the giant components. For case 2, we stop traversing the -
subtree rooted at thE. Figure 4 illustrates the process, * | oPon!!oca aoareaation step
Here the root nod& is decomposed into two giant com-
ponentsA and B. B is further decomposed into another
two giant component® and F, while A is decomposed 4 Aggregate edge weights
into one giant componer. The giant component dis-
appears for any further decomposition, indicated by the®  Final graph resuits
dash-lines. According to the theotyt, C, D, andE are Figure 5: Process flow of Method 1.
bot-user groups. If a node is chosen as a bot-user group, . ) )
the sub-tree rooted at the chosen node is considered féuticular, one can divide the graph edges into multi-
longing to the same bot-user group. Thatis, if we pigk Ple partitions, identify the connected subgraph compo-
we disregard its child” as it is a subcomponent of. nents in each partition, and then merge the incomplete
. subgraphs iteratively. To avoid overloading the merging

5 Large-scale Parallel Graph Construction node, instead of sending all outputs to a single merging
The major challenge in applying BotGraph is the conhode, each time we merge two results from two parti-
struction of a large user-user graph from the Hotmatilions. This parallel algorithm is both efficient and scal-
login data — the first stage of our graph-based ana|y5f,§)|e. Using the same 240-machine cluster in our experi-
described in Section 3.2. Each record in the input loghents, this parallel algorithm can analyze a graph with
data contains three fieldstserID, IPAddressandLogin- 8.6 billion edges in only 7 minutes — 34 times faster
TimestampThe output of the graph construction is a listthan the 4 hour running time by a single computer. Given
of edges in the form obJserID;, UserlD,, andWeight  our performance bottleneck is at the first stage of graph
The number of users on the graph is over 500 milliofgonstruction instead of graph analysis, we do not further
based on a month-long login data (220 GB), and thiglaborate this step.
numk_)er is increasing as the Hotmail user population i_§.1 Two Implementation Methods
growing. The number of edges of the computed graph is
on the order of hundreds of billions. Constructing sucH he first step in data-parallel applications is to partition
a large graph using a single computer is impractical. Agata. Based on the ways we partition the input data,
efficient, scalable solution is required so that we coultve have different data processing flows in implementing
detect attacks as early as possible in order to take timefjfaph construction.
reactive measures. 5.1.1 Method 1: Simple Data Parallelism

For data scalability, fault tolerance, and ease of pro-
gramming, we choose to implement BotGraph usingur first approach is to partition data according to IP ad-
Dryad/DryadLINQ, a powerful programming environ- dress, and then to leverage the well known Map and Re-
ment for distributed data-parallel computing. How-duce operations to straightforwardly convert graph con-
ever, constructing a large user-user graph usingfruction into a data-parallel application.
Dryad/DryadLINQ is non-trivial. This is because the As illustrated in Figure 5, the input dataset is parti-
resulting graph is extremellarge, therefore a straight- tioned by the user-login IP address (Step 1). During the
forward parallel implementation is inefficient in perfor-Map phase (Step 2 and 3), for any two usEfsandU;
mance. In this section, we discuss in detail our solusharing the same IP-day pair, where the IP address is
tions. We first present both a simple parallelism methoffom Autonomous System.S;,, we output an edge with
and a selective filtering method, and then describe seweight onee =(U;, U;, ASy). Only edges pertaining to
eral optimization strategies and their performance imdifferent ASes need to be returned (Step 3). To avoid out-
pacts. We also discuss several important issues arisipgtting the same edge multiple times, we use a local hash
in the system implementation, such as data partitioningable to filter duplicate edges.
data processing flow, and communication methods. Us- After the Map phase, all the generated edges (from all
ing a one-month log as input, our current implementatiopartitions) will serve as inputs to the Reduce phase. In
can construct a graph with tens of millions of nodes in 1.patrticular, all edges will be hash partitioned to a set of
hours using a 240-machine cluster. During this procesprocessing nodes for weight aggregation usitig (/)
BotGraph filters out weight one edges, and the remainirigiples as hash keys (Step 4) . Obviously, for those user
number of edges for the next-stage processing is aroupairs that only share one IP-day in the entire dataset, there
8.6 hillion. is only one edge between them. So no aggregation can

We also implemented the second stage of finding corpe performed for these weight one edges. We will show
nected components using Dryad/DryadLINQ. This stagkter in Figure 7 that weight one edges are the dominate
can be solved using a divide and conquer algorithm. Iaource of graph edges. Since BotGraph focuses on only
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! ) ) 5.1.3 Comparison of the Two Methods
edges with weight two and above, the weight one edges

introduce unnecessary communication and computatidi 9eneral, Method 1 is simple and easy to implement,
cost to the system. After aggregation, the outputs of tHeut Method 2 is more optimized for our application. The

Reduce phase are graph edges with aggregated We|gh1r§|a|n difference between the two data processing flows is
that Method 1 generates edges of weight one and sends

5.1.2 Method 2: Selective Filtering them across the network in the Reduce phase, while
An alternative approach is to partition the inputs based odlethod 2 directly computes edges with weigit or
user ID. In this way, for any two users that were located imore, with the overhead of building a local summary and
the same partition, we can directly compare their lists dfansferring the selected records across partitions. Fig-
IP-day pairs to compute their edge weight. For two usengre 7 shows the distribution of edge weights using one-
whose records locate at different partitions, we need tmonth of user login records as input. Here, the number
ship one user’s records to another user’s partition befo weight one edges is almost three orders of magnitude
computing their edge weight, resulting in huge commumore than the weight two edges. In our botnet detection,
nication costs. we are interested in edges with a minimum weight two
We notice that for users who do not share any IP-dalgecause weight one edges do not show strong correlated
keys, such communication costs can be avoided. Thgin activities between two users. Therefore the com-
is, we can reduce the communication overheadséy putation and communication spent on generating weight
lectively filteringdata and distributing only the related one edges are not necessary. Although in Method 1, Step
records across partitions. 3 can perform local aggregation to reduce the number
Figure 6 shows the processing flow of generating useof duplicated weight one edges, local aggregation does
user graph edges with such an optimization. For eaatot help much as the number of unique weight one edges
partitionp;, the system computeslacal summarys; to  dominates in this case.
represent the union of all the IP-day keys involved in this Given our implementation is based on the existing
partition (Step 2). Each local summasy is then dis- distributed computing models such as MapReduce and
tributed across all nodes for selecting the relevant inpubryadLINQ, the amount of intermediate results impacts
records (Step 3). At each partitign(;j # ¢), upon re- the performance significantly because these program-
ceiving s;, p; will return all the login records of users ming models all adopt disk read/write as cross-node com-
who shared the same IP-day keyssjn This step can be munication channels. Using disk access as communica-
further optimized based on the edge threshaldf a user tion is robust to failures and easy to restart jobs [6, 29].
in p; shares fewer thaw IP-day keys with the summary However, when the communication cost is large such as
si, this user will not generate edges with weight at leagh our case, it becomes a major bottleneck of the over-
w. Thus only the login records of users who share at leaatl system running time. To reduce this cost, we used a
w IP-day keys withs; should be selected and sent to parfew optimization strategies and will discuss them in the
tition p; (Step 4)). To ensure the selected user records witiext subsection. Completely re-designing or customizing
be shipped to the right original partition, we add an adthe underlying communication channels may improve the
ditional label to each original record to denote their parperformance in our application, but is beyond the scope
tition ID (Step 7). Finally, after partitiop; receives the of this paper.
records from partitiorp;, it joins these remote records Note the amount of cross-node communication also
with its local records to generate graph edges (Step 8 agdpends on the cluster size. Method 1 results in a constant
9). communication overhead, i.e., the whole edge set, regard-
Other than Map and Reduce, this method requires twigss of the number of data partitions. But for Method
additional programming interface supports: the operatiop, when the number of computers (hence the number of
to join two heterogeneous data streams and the operatigata partitions) increases, both the aggregated local sum-
to broadcast a data stream. mary size and the number of user-records to be shipped



Communication data sizdotal running time
Method 1] 12.0TB > 6 hours
Method 2 1.7TB 95 min

Table 1: Performance comparison of the two methods using the
2008-dataset.

(a) Serial merge (b) Parallel merge
Figure 8: (a) Default query execution plan (b) Optimized query Communication data siZ&otal running time
execution plan. Method 1 (no comp.) 2.717TB 135 min
Method 1 (with comp. 1.02TB 116 min
Method 2 (no comp.) 460 GB 28 min
Method 2 (with comp. 181 GB 21 min

increase, resulting in a larger communication overhead. ) )
In the next subsections, we present our implementatior@ble 2: Performance comparison of the two methods using a
and evaluate the two different methods using real-data exPset of the 2008-dataset.
periments.
5.3 Performance Evaluation

5.2 Implementations and Optimizations . . .
In this section, we evaluate the performance of our im-

In our implementation, we have access to a 240-machir#eémentations using a one-month Hotmail user-login log
cluster. Each machine is configured with an AMD Duakollected in Jan 2008 (referred to as the 2008-dataset).
Core 4.3G CPU and 16 GB memory. As a pre-processingne raw input data size is 221.5 GB, and after pre-
step, all the input login records were hash partitioneiltering, the amount of input data is reduced to 102.9
evenly to the computer cluster using the DryadLINQGB. To use all the 240 machines in the cluster, we gen-
built-in hash-partition function. erated 960 partitions to serve as inputs to Method 1 (so
that the computation of each partition fits into memory),
d generated 240 partitions as inputs to Method 2. With
ompression and parallel data merge both enabled, our

Given the Hotmail login data is on the order of hun
dreds of Gigabytes, we spent a number of engineeri

efforts to reduce the input data size and cross-node cor,

munication costs. The first two data reduction strategiég]plememat'on of Method 2 finishes in about 1.5 hours

can be applied to both methods. The last optimization {4Sing allthe 24.0 machines, while Method 1 cannot finish
customized for Method 2 only. within the maximum 6 hour quota allowed by the com-

o , , puter cluster (Table 1). The majority of time in Method
1. User pre-filtering: We pre-filter users by their lo- 1 js spent on the second Reduce step to aggregate a huge

gin AS numbers: if a user has logged in from IP address§g)jyme of intermediate results. For Method 2, the local

across multiple ASes in a month, we regard this user a§,mmary selection step generated about 5.8 GB aggre-

a suspicious user candidate. By choosing only suspicioysited |P-day pairs to broadcast across the cluster, result-
users (using 2 ASes as the current threshold) and the,?Hg 1.35 TB out of the 1.7 TB total traffic.

records as input, we can reduce the number of users to

consider from over 500 million (about 200-240GB) In order to benchmark performance, we take a smaller

to
2o 70 il (about 100G8). T step COMDIISs 1 s vy & rrs o 5 v o comms
about 1-2 minutes. nication costs and the total running time using the 240
2. Compression:Given the potential large communi- machine cluster. While Method 1 potentially has a better
cation costs, BotGraph adopts the DryadLINQ providedcalability than Method 2 as discussed in Section 5.1.3,
compression option to reduce the intermediate result sizgiven our practical constraints on the cluster size, Method
The use of compression can reduce the amount of crossgenerates a smaller amount of traffic and outperforms
node communication by 2-2.5 times. Method 1 by about 5-6 times faster. The use of compres-
3. Parallel data merge: In Method 2, Step 3 merges Sion reduces the amount of traffic by about 2-3 times, and
the local IP-day summaries generated from every nodbe total running time is about 14-25% faster.
and then broadcasts the aggregated summary to the entirdo evaluate the system scalability of Method 2, we
cluster. The old query plan generated by DryadLINQ iwary the number of data partitions to use different num-
shown in Figure 8 (a), where there exists a single nodeer of computers. Figure 9 shows how the communica-
that performs data aggregation and distribution. In ouiion overheads grow. With more partitions, the amount
experiments, this aggregating node becomes a big baif data generated from each processing node slightly de-
tleneck, especially for a large cluster. So we modifiedreases, but the aggregated local summary data size in-
DryadLINQ to generate a new query plan that supportsreases (Figure 9 (a)). This is because popular IP-day
parallel data aggregation and distribution from everypairs may appear in multiple data partitions and hence
processing node (Figure 8 (b)). We will show in Secin the aggregated summary multiple times. Similarly,
tion 5.3 that this optimization can reduce the broadcashe same user login records will also be shipped across
time by 4-5 times. a larger number of nodes, increasing the communication
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gin records to be sent across the network. tioning.
0 ) is both large and dense. Therefore, one potential opti-
200 e | £ %0 {258 mization technique is to strategically partition the login
250 0Graph construction £ 250 4 records. Intuitively, we can reduce the communication
. € H

200 B Re-labeling 52 costs if we pre-group users so that users who are heav-
150 | £ 101 ily connected are placed in one partition, and users who
100 i 5095 are placed in different partitions have very few edges be-
50 2 %8 224 11| tween them. |If tep 4 in Method 2 will return onl

' ‘D‘m‘m‘g . A W een the so, Step ethod eturn only

o 1w 1 0 @small number of records to ship across different nodes.

umber of pariions Surprisingly, we found this strategy actually induced neg-
() (b) ative impact on the system performance.

Figure 10: Running time as we vary the number of input data Figure 11 (b) shows the graph construction time spent

partitions for Method 2. (a) Total running time of all partitions. at a processing node with and without strategic data par-

(b) The running of each partition. The error bars show the magitioning. We chose the 240 input data partition scenario

10 200 10

50 100 150
Number of partitions

and the min running time across all partitions. and use the full dataset to illustrate the performance dif-
ference. In the first case, we evenly distributed login
costs as the system scales (Figure 9 (b)). records by hashing user IDs. In the second case, we

Even though the communication costs increase, the tohose a large botnet user group with 3.6M users and put
tal running time is still reduced with a larger cluster sizeall their login records evenly across 5 partitions, with the
Figure 10 (a) shows the total running time and its breakremaining data evenly distributing across the remaining
down across different steps. When the cluster size @artitions. This scenario assumes the best prior knowl-
small (10 partitions), a dominant amount of time is spen¢dge of user connections. Although in both cases, the
on computing the graph edges. As the system scales, titigal amount of input data in each partition is roughly uni-
portion of time decreases sharply. The other three stefam, we observe a big difference between the maximum
are 1/0 and network intensive. Their running time slightlyand minimum time in computing the edges across nodes.
decreases as we increase the number of partitions, but #éthout strategic partitioning, the maximum and mini-
savings get diminished due to the larger communicatiomum processing time is very close. In contrast, strategic
costs. Figure 10 (b) shows the average running time spgpartitioning caused a huge degree of unbalance in work-
on processing each partition, and its variations are vetgad, resulting in much longer total job running time.
small. . C

We now examine the benefits of adopting parallel datg Bot-user Detection and Validation
merge. The purpose of parallel data merge is to remowe use two month-long datasets as inputs to our system:
the bottleneck node that performs data aggregation asd2007-dataset collected in Jun 2007, and a 2008-dataset
broadcasting. Since it is difficult to factor out the networkcollected in Jan 2008. Each dataset includes two logs: a
transfer time savings alone (network, disk I/0O, and comHotmail login log (format described in Section 5) and a
putation are pipelined), we compare the time spent on theotmail signup log. Each record in the signup log con-
user record selection step (Figure 11 (a)). This optimizaains a user-ID, the remote IP address used for signup,
tion can reduce the processing latency significantly as thend the signup timestamp. For each dataset, we run our
cluster size increases (75% reduction in the 200 node sdWMA-based anomaly detection on the signup log and
nario). Without parallel data merge, the processing timeun our graph based detection on the login log. Using
increases almost linearly, but with this optimization, théoth components, BotGraph detected tens of millions of
amount of time remains roughly constant. bot users and millions of botnet IPs. Table 3 summarizes

For Method 2, one reason for the large communicathe results for both months. We present the detailed re-
tion costs is that for botnet users, their graph componestlts and perform evaluations next.



Fraction of botnet IPs

Month 06/200701/2008 Month 06/2007 01/2008 Month 06/200701/2008
# of bot-user§ 5.97M| 20.58M # of bot IPs 82,026 240,784 # of bot-groups 13 40
# of bot-IPs || 2.71M| 1.84M # of bot-user accounts 4.83 M| 16.41 M # of bot-accounts 2.66M| 8.68M
Table 3: Total bot-users and bot IPAvg. anomaly window| 1.45 day 1.01 day # of unique IPs]| 2.69M] 1.60M
addresses detected using both historyble 4: History based detection of bot IPTable 5: Bot IP addresses and bot-user ac-
based detection and user-user graph.addresses and bot-user accounts. counts detected by user-user graphs.
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Figure 12: (a) Cumulative distribution of anomaly window sizeFigure 13: Bot-user group properties: (a) The the number of

in terms of number of days. (b) Cumulative distribution of theusers per group, (b) The peakness score of each group, reflect-

number of accounts signed up per suspicious IP. ing whether there exists a strong sharp peak for the email size
distribution.

6.1 Detection Using Signup History
Table 4 shows that the EWMA algorithm detected 21.5n0ve normal user components. In our experiments, the
confidence measures are well separated: most of the bot-

million bot-user accounts when applied to the two Hot- .
mail signup logs. Comparing Jan 2008 with Jun 20g73roups have confidence measures close to 1, and a few

both the number of bot IPs and the signed-up bot-useF“gOUpS arg betv]:{gen 0.4 and 0.6. vag gbsehr_viawdre] mar-
increased significantly. In particular, the total number offIN around confidence measure of 0.6, which we choose

bot-accounts signed up in Jan 2008 is more than thr&s OUr thres_hold. AS d|scuss'ec! n Seqt!on 4'2‘2.’ this is
times the number in Jun 2007. Meanwhile. the anomal conservative th.reshold and is in-sensitive to noises due
f the wide margin. For any group that has a confidence

window is shortened from an average of 1.45 days to 1. below 0.8 dit |
days, suggesting each attack became shorter in Jan pogiasure below 9.0, we regard it as a hormal USer group

Figure 12 (a) shows the cumulative distribution of theanOI prune it from our t_ree. . .
anomaly window sizes associated with each bot IP ad- Table 5_shows the final detection results after pruning
dress. A majority (80% - 85%) of the detected IP agand grouping. Both the number of bot-users and the num-

dresses have small anomaly windows, ranging from a feRf" of bot IP addresses are on the order of millions — a

hours to one day, suggesting that many botnet signup é‘tgn-trivial fraction of all the users and IP addresses ob-

tacks happened in a burst. served by Hotmail. We find the two sets of bot-users

Figure 12 (b) shows the cumulative distributions of théletected in two months hardly _overlap. These accounts
were stealthy ones, each sending out only a few to tens

number of accounts signed up per bot IP. As we can se _ ' . o
the majority of bot IPs signed up a large number of ac? SPam emails during the entire month. Therefore, it is
fficult to capture them by looking for aggressive send-

counts, even though most of them have short anoma heir | lation. d . d
windows. Interestingly, the cumulative distributions de!"9 Patterns. Due to their large population, detecting an

rived from Jun 2007 and Jan 2008 overlap well with eachanitizing these users are important both to save Hotmail
other, although we observed a much larger number gpsources and to_ reduce the ""”?0“”‘ of spam sent to the
bot IPs and bot-users in Jan 2008. This indicates th4jtéMet. Comparing Jan 2008 with Jun 2007, the number
the overall bot-user signup activity patterns still remairP! PO-USers tripled, suggesting that using Web portals as

similar perhaps due to the reuse of bot-account signLﬁ)Spammmg media has become more popular.
tools/software. Now we study the properties of bot-users at a group

. level. Figure 13 (a) shows that the number of users in
6.2 Detection by User-User Graph each group ranges from thousands to millions. Compar-
We apply the graph-based bot-user detection algorithing Jan 2008 with Jun 2007, although the largest bot-
on the Hotmail login log to derive a tree of connectediser group remains similar in size, the number of groups
components. Each connected component is a set of botereased significantly. This confirms our previous ob-
user candidates. We then use the procedures describedgétvation that spammers are more frequently using Web
Section 4.2.2 to prune the connected components of n@mail accounts for spam email attacks.
mal users. Recall that in the pruning process, we apply We next investigate the email sending patterns of the
a threshold on the confidence measure of each compaetected bot user groups. We are interested in whether
nent (computed from the “email-per-day” feature) to rethere exists a strong peak of email sizes. We use the peak-
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ness score metrig, (defined in Section 4.2.2) to quantify T FE
the degree of email size similarity for each group. Fig- *

ure 13 (b) shows the distributions ef in sorted order.

A majority of groups have peakness scores higher than
0.6, meaning that over 60% of their emails have similar
sizes. For the remaining groups, we performed manual
investigation and found they have multiple peaks, result-
ing in lower scores. The similarity of their email sizes is
a strong evidence of correlated email sending activities. ol - .

10 10 10

In the next two sub-sections, we explore the quality of Bot-user group size
the total captured 26 million bot-users. First, we examingigure 14: Validation of login-graph detected bot-users using
whether they are known bad and how many of them argaming scores.
our new findings. Second, we estimate our detection false
positive rates. 6.4

I o o
> o ©

Naming pattern score

I
N

False Positive Analysis

o In the previous subsection, we analyzed the overlap be-
6.3 Known Bot-users vs. New Findings tween our results and the set of known bad accounts. For

We evaluate our detected bot-users against a set of knol{}f 'émaining ones, validation is a challenging task with-

spammer users reported by other email servers in JQHt the ground truth. We examine the following two ac-
20084, count features to estimate the false positive rates: naming

. rns and sign .
Denote H as the set of bot-users detected by S|gnu8atte s and signup dates

history using EWMA, K, as the set of known spam- 6.4.1 Naming Patterns

mer accounts signed up in the month that we study, ancbr the identified groups, we found almost every group
K, N H as the intersection betweéef and K;. The ra-  follows a very clear user-name template, for example, a
tio of £57 represents the percentage of captured bofixed-length sequence of alphabets mixed with digits
users that are previously known bad. 'In other wordszxamples of such names dt&r9168d4dc8c5c25f9” and
1 — B0 is our new findings. The ratio okﬂ de-  v9550a21daded56a2".
notes the recall of our approach. Table 6 shows that, in To quantify the similarity of account names in a group,
Jun 2007, 85.15% of the EWMA-detected bot-user deye introduce anaming pattern scoravhich is defined as
tected are already known bad, and the detected bot-usge |argest fraction of users that follow a single template.
covers a significant fraction of bad account, i.e., recall £ach template is a regular expression derived by a regular
67.96%. Interestingly, Jan 2008 yields quite differenkexpression generation tool [27]. Since many accounts de-
results. EWMA is still able to detect a Iarge fraction Oftected in Jun 2007 were known bad and hence cleaned by
known bad account. However, only 8.17% of detecte¢he system already, we focus on bot-user groups detected
bad-users were reported to be bad. That means 91.83f43an 2008.
of the captured spamming accounts are our new findings. Figure 14 shows the naming score distribution. A ma-
We apply a similar study to the bot-users detected bjprity of the bot-user groups have close to 1 haming pat-
the user-user graph. Dendig as the set of known spam- tern scores, indicating that they were signed up by spam-
mers users that log in from at least 2 ASésas the set mers using some fixed templates. There are only a few
of bot-users detected using our user-user graph based apt-user groups with scores lower than 0.95. We manu-
proach, andK; N L as the intersect betwedki; and L.  ally looked at them and found that they are also bad users,
Again we use the ratios o?lLLL andKl?rl‘L to evaluate but the user names come from two naming templates.
our resultZ, as shown in Table 7. Using our graph-It is possible that our graph-based approach mixed two
based approach, the recall is higher. In total, we wergroups, or the spammers purchased two groups of bot-
able to detect 76.84% and 85.80% of known spammersers and used them together. Overall, we found in total
users in Jun 2007 and Jan 2008, respectively. Similar tmly 0.44% of the identified bot-users do not strictly fol-
EWMA, the graph-based detection also identified a larglmw the naming templates of their corresponding groups.
number (54.1Q%) .of previously unknown bot-accounts i 4 o Signup Dates
Jan 2008. This might be because these accounts are new N ) ) )
massive amount of spam emails yet. So, they are not y&{d the signup dates of the cjetected bot-users. Sl.nce the
reported by other mail servers as of Jan 2008. The ability/eb-account abuse attack is recent and started in sum-

of detecting bot-accounts at an early stage is important f§€r 2007, we regard all the accounts signed up before

fied bot-users were signed up before year 2007. To cal-

4These users were complained of having sent outbound spam >Note it is hard to directly use the naming pattern itself to identify
emails. spamming accounts due to the easy countermeasures.



I =K, N H|06/200701/2008 \I = K; N L||06/200701/2008§
I/H 85.15% 8.17% \ 1/L 90.95% 45.9%
I/K. | 67.96% 52.41% | I/K, ][76.84% 85.8%

Table 6: Comparing bot-users detected by signup history Osble 7: Comparing bot-users detected by user-user graph

ing EWMA with known spammer user sets, using the ratios wfith known spammer user sets, using the ratios’—(e%@

K and 5500 See text for the definition off and K. andK;‘—fl‘L. See text for the definition ok, andL.

ibrate our results against the entire user population. Weme. If one of the bot-accounts is captured, the entire
look at the sign up dates of all users in the input datasegroup can be easily revealed. A more generalized solu-
About 59.1% of the population were signed up beforeion is to broaden our edge weight definition by consider-
2007. Assuming the normal user signup-date distribuing additional feature correlations. For example, we can
tions are the same among the overall population and opptentially use email sending patterns such as the desti-
detected user set, we adjust the false positive rate to bation domain [24], email size, or email content patterns
0.08%/59.1% = 0.13% (e.g., URL signatures [27]). As ongoing work, we are
The above two estimations suggest that the false posxploring a larger set of features for more robust attack
itive of BotGraph is low. We conservatively pick the detection.
higher one 0.44% as our false positive rate estimate. In addition to using graphs, we may also consider other
. . alternatives to capture the correlated user activity. For
7 Discussion example, we may cluster user accounts using their login
In this paper, we demonstrated that BotGraph can detgét addresses as feature dimensions. Given the large data
tens of millions of bot-users and millions of bots. Withvolume, how to accurately and efficiently cluster user ac-
this information, operators can take remedy actions argbunts into individual bot-groups remains a challenging
mitigate the ongoing attacks. For bot-users, operators cagsearch problem.
block their accounts to prevent them from further sending It is worth mentioning that the design and imple-
spam, or apply more strict policies when they log in (e.g/nentation of BotGraph can be applied in different ar-
request them to do additional CAPTCHA tests). For deeas for constructing and analyzing graphs. For ex-
tected bot IP addresses, one approach is to blacklist thexmple, in social network studies, one may want to
or rate limit their login activities, depending on whethergroup users based on their buddy relationship (e.g., from
the corresponding IP address is a dynamically assign&dSN or Yahoo messengers) and identify community pat-
address or not. Effectively throttling botnet attacks in théerns. Finally, although our current implementations are
existence of dynamic IP addresses is ongoing work.  Dryad/DryadLINQ specific, we believe the data process-
Attackers may wish to evade the BotGraph detectiong flows we propose can be potentially generalized to
by developing countermeasures. For example, they ma&yher programming models.
reduce the n_umber of users signed up _by eac_h bot. Th%y Conclusion
may also mimic the normal user email-sending behav-
ior by reducing the number of emails sent per accoure designed and implementétbtGraph for Web mail
per day (e.g., fewer than 3). Although mimicking normalservice providers to defend against botnet launched Web-
user behavior may evade history-based change detecti@gcount abuse attacks. BotGraph consists of two com-
or our current thresholds, these approaches also signifionents: a history-based change-detection component to
cantly limit the attack scale by reducing the number ofdentify aggressive account signup activities and a graph-
bot-accounts they can obtain or the total number of spafsed component to detect stealthy bot-user login activ-
emails to send. Furthermore, BotGraph can still capturdées. Using two-month Hotmail logsBotGraph suc-
the graph structures of bot-user groups from their logigessfully detected more than 26 million botnet accounts.
activity to detect them. To process a large volume of Hotmail data, BotGraph is
A more sophisticated evasion approach may bind eadfplemented as a parallel Dryad/DryadLINQ application
bot-user to only bots in one AS, so that our current imtunning on a large-scale computer cluster. In this paper,
plementation would pre-filter them by the two AS threshwe described our implementations in detail and presented
old. To mitigate this attack, BotGraph may revise théerformance optimization strategies. As general-purpose
edge weight definition to look at the number of IP predistributed computing frameworks have become increas-
fixes instead of the number of ASes. This potentialljngly popular for processing large datasets, we believe
pushes the attacker countermeasures to be more likeodr experience will be useful to a wide category of appli-
fixed IP-account binding strategy. As discussed in Se&ations for constructing and analyzing large graphs.
ti_on 3.2, binding each bot-user to a fixgd bot is not de9 Acknowledgement
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A EWMA based Aggressive Signup
Detection

Exponentially Weighted Moving Average (EWMA) is a
well known moving average based algorithm to detec[ 1
sudden changes. EWMA is both simple and effective,
and has been widely used for anomaly detection [12].

Given a time series data, let the observation value at
timet beY;. Let S, be the predicted value at timeand ~ [12]
a (0 < a < 1) be the weighting factor, EWMA predicts

Sy as
‘ Si=axY_ 1+ (1—a)xS_1 (1)
We define the absolute prediction erigy and the rel-

ative prediction erro?; as:
_ - [15] Massive parallel processing. http://en.
Ey =Y, =5t R =Y/ max(5 ) @ wikipedia.org/wiki/Massive _parallelism
wheree is introduced to avoid the divide-by-zero prob- [16] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
lem. A large prediction erraE;, or R; indicates a sudden A. Tomkins. Pig latin: A not-so-foreign language for data

. . . . processing. IACM SIGMOD 2008.
change in the time series data and should raise an alarfz) w1, 1. 0zsu and P. ValduriezPrinciples of Distributed

When the number of new users signed up has dropped t0 ~ Database Systems (2nd editioRrentice-Hall, 1999.

the number before the sudden change, the sudden charigg] R. Pike, S. Dorward, R. Griesemer, and S. Quinla. Inter-
ends. We define the time window between the start and ~ preting the data: Parallel analysis with sawz8itientific
the end of a sudden changeths anomaly windowAll Programming Journal13(4), 2005.

. . . . 19] P. Porras, H. Saidi, and V. Yegneswaran. A multi-
the a_cg:ounts signed up during this anomaly window aré perspective analysis of the storm (peacomm) worm. Tech-
suspicious bot-users.

A . ) ) . nical report, SRI Computer Science Laboratory, 2007.
In our implementation, we consider the time unit of[20] H. Project and R. Alliance. Know your enemy: Tracking
a day, and hencé, is the predicted number of daily botnets. http://www.honeynet.org/papers/

[10]

signup accounts. For any IP address, if b&th > 65 bots/ , 2005. _
andR; > dx, we mark dayt as the start of its anomaly [21] Parallel virtual machine.http://www.csm.ornl.
’ gov/ipvm/ .

window. From a two-year Hotmail signup log, we derive [22]
the 99%-tile of the daily number of account signups pef  multifaceted approach to understanding the botnet phe-
IP address. To be conservative, We set the threshold nomenon. INMC, 2006. _

to be twice this number to rule out non-proxy normal IPs[23] A. Ramachandran and N. Feamster. Understanding the

M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A

ICM SIG-

For proxies, the relative prediction error is usually a bet-

ter metric to separate them from bots. It is very rare for
proxy to increase its signup volume by 4 times overnight.

So we conservatively seéy; to 4.
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